E-ISSN : 3025-1311 O.{
https://ejournal.warunayama.org/kohesi >

Kohesi: Jurnal Multidisiplin Saintek
Volume 9 No 2 Tahun 2025

ANALISIS PERAN ENKAPSULASI DALAM BAHASA PEMROGRAMAN PYTHON TERHADAP

KEAMANAN DAN REUSABILITY KODE

Wahyu Rahman Hakim?, Josefin Anderson 2, Yuda Al’Hadid3, M. Arya Saputra4, Gunawan

Saputra’

1,2,3,45 Program Studi Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah

Bengkulu,

JL. Bali, Kampung Bali, Teluk Segara, Kota Bengkulu, Bengkulu, Indonesia
Email Korespondensi: waraha93@gmail.com

ABSTRAK

Enkapsulasi merupakan konsep inti dalam Pemrograman
Berorientasi Objek (PBO) yang berperan penting dalam
meningkatkan keamanan serta kemampuan penggunaan ulang
(reusabilitas) kode. Tidak seperti Java atau C++ yang
menerapkan kontrol akses secara ketat, Python menggunakan
konvensi penamaan (seperti awalan garis bawah) dan dekorator
@property untuk mengatur visibilitas data. Penelitian ini
mengkaji bagaimana mekanisme enkapsulasi di Python
berkontribusi dalam menjaga keamanan data internal serta
mendukung struktur kode yang modular dan mudah dipelihara.
Dengan metode deskriptif kualitatif melalui studi pustaka,
penelitian ini menganalisis praktik enkapsulasi berdasarkan
literatur akademik, dokumentasi resmi, dan artikel teknis.
Hasilnya menunjukkan bahwa meskipun Python tidak membatasi
akses secara teknis, enkapsulasi tetap memberikan manfaat
nyata dalam membatasi akses langsung terhadap atribut objek,
menjaga konsistensi data, dan mempermudah penggunaan ulang
kode. Tantangan yang ditemukan antara lain fleksibilitas Python
yang membuat pemula cenderung mengabaikan prinsip
enkapsulasi, serta celah akses melalui teknik name mangling.
Penelitian ini memberikan saran praktis seperti penggunaan
@property, perancangan antarmuka publik yang jelas, dan
penguatan modularitas kode. Secara keseluruhan, penerapan
enkapsulasi yang tepat dalam Python tetap penting untuk
menghasilkan sistem perangkat lunak yang aman dan dapat
digunakan kembali.

Kata kunci: enkapsulasi, keamanan perangkat lunak,
modularitas, Python, reusabilitas kode

ABSTRACT
Encapsulation is a core concept of Object-Oriented Programming
(OOP) that plays a critical role in enhancing both security and
code reusability. Unlike languages such as Java or C++ that apply
strict access control, Python utilizes naming conventions (e.g.,
underscore prefixes) and the @property decorator to manage
data visibility. This study investigates how encapsulation
mechanisms in Python contribute to securing internal data and
promoting modular, maintainable code. Employing a qualitative
descriptive approach through literature review, the research

Article History

Received: Juni 2025
Reviewed: Juni 2025
Published: Juli 2025

Plagirism Checker No
234

Prefix DOI : Prefix DOI :
10.8734/Kohesi.v1i2.365
Copyright : Author
Publish by : Kohesi

@006

This work is licensed
under a Creative
Commons Attribution-
NonCommercial4.0
International License

1

https://creativecommons.org/licenses/by-nc/4.0/
https://ejournal.warunayama.org/
mailto:waraha93@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

E-ISSN : 3025-1311 O.{ Kohesi: Jurnal Multidisiplin Saintek
https://ejournal.warunayama.org/kohesi > Volume 9 No 2 Tahun 2025

draws from academic sources, documentation, and technical
articles to analyze encapsulation practices. The findings
indicate that, although Python does not enforce access
restrictions technically, encapsulation still offers significant
benefits by minimizing direct access to object attributes,
ensuring data consistency, and simplifying code reuse.
Challenges identified include Python’s flexible structure that
may lead beginners to overlook encapsulation principles, and
the ease of bypassing data protection via name mangling. To
address this, the study provides practical recommendations such
as applying @property, defining clear public interfaces, and
reinforcing code modularity. Overall, encapsulation in Python,
when applied properly, remains essential for developing secure
and reusable software systems.

Keywords: code reusability, encapsulation, modularity, Python,
software security

PENDAHULUAN

Paradigma Pemrograman Berorientasi Objek (PBO) menjadi pendekatan dominan dalam
rekayasa perangkat lunak di era pengembangan perangkat lunak yang semakin kompleks karena
memungkinkan pembuatan kode yang modular, dapat digunakan kembali, dan lebih mudah
dirawat (Martin, 2008). Dalam survei besar mengenai paket-paket Python di repositori publik
PyPl, ditemukan bahwa sekitar 46% paket memiliki setidaknya satu masalah keamanan saat
dianalisis secara statis, kode atau modul Python rentan terhadap ancaman, termasuk
penanganan exception, injeksi, dan celah modul seperti subprocess(Ruohonen et al., 2021).
Salah satu elemen krusial dalam PBO adalah enkapsulasi, yaitu metode yang membatasi akses
langsung ke atribut atau metode dalam objek, sehingga hanya bisa diakses melalui interface
tertentu. Enkapsulasi bertujuan untuk melindungi data internal, mencegah manipulasi yang
tidak diinginkan, serta meningkatkan konsistensi dan keandalan sistem (Ali et al., 2024).

Dalam bahasa pemrograman seperti Java dan C++, mekanisme enkapsulasi diterapkan
melalui sistem pembatasan akses yang ketat (seperti private, protected, dan public). Akan
tetapi, Python mengadopsi cara yang lebih santai, karena tidak menawarkan sistem kontrol
akses yang ketat secara teknis, melainkan mengandalkan konvensi penamaan atribut (seperti
prefiks underscore _atau__) dan fitur @property untuk mengelola visibilitas serta pen gendalian
data Click or tap here to enter text.. Dari kajian pustaka, banyak penelitian menyoroti
keamanan Python dengan teknik-statis atau enkripsi, tetapi tidak secara khusus menelaah peran
enkapsulasi sebagai blok pembangun struktur kode yang aman dan reusable. Kesenjangan
penelitian inilah yang mendorong perlunya fokus khusus pada enkapsulasi, pendekatan ini
memunculkan pertanyaan: apakah enkapsulasi di Python cukup efektif untuk melindungi
keamanan data internal dan mendukung penggunaan kembali kode dalam konteks rekayasa
perangkat lunak yang professional.

Dari permasalahan itu, penelitian ini bertujuan untuk menganalisis penggunaan
enkapsulasi dalam bahasa Python serta mengevaluasi kontribusinya terhadap aspek keamanan
dan penggunaan kembali kode program. Selain itu, studi ini juga bertujuan untuk menghasilkan
rekomendasi desain yang aplikatif dan relevan berdasarkan prinsip enkapsulasi, untuk
meningkatkan kualitas kode Python dalam hal keamanan dan kemudahan pemeliharaan
(maintainability). Inti dari penelitian ini adalah cara konvensi dan mekanisme enkapsulasi

https://ejournal.warunayama.org/

E-ISSN : 3025-1311 O.{ Kohesi: Jurnal Multidisiplin Saintek
https://ejournal.warunayama.org/kohesi > Volume 9 No 2 Tahun 2025

diterapkan dalam Python, serta bagaimana mekanisme tersebut membantu dalam membangun
struktur kode yang aman dan mudah untuk digunakan kembali

Studi ini diharapkan dapat memberikan sumbangan secara teoritis, yaitu meningkatkan
pemahaman dan referensi mengenai praktik enkapsulasi dalam paradigma PBO melalui
pendekatan Python, serta kontribusi praktis, yaitu menjadi acuan untuk mahasiswa dan
pengembang perangkat lunak pemula dalam menyusun kode Python yang lebih terstruktur,
aman, dan modular

METODE
Susunan umum makalah

Penelitian ini menerapkan metode deskriptif melalui pendekatan studi pustaka (library
research). Metode deskriptif bertujuan untuk menyajikan secarasistematis dan faktual tentang
ciri-ciri fenomena yang sedang diteliti (Avianti et al., 2010). Pendekatan studi pustaka
merupakan metode penelitian yang memanfaatkan sumber-sumber tertulis seperti buku,
jurnal, artikel, dan dokumen lainnya untuk mengumpulkan data serta informasi yang
berhubungan dengan topik penelitian (Del Cid et al., 2009). dalam hal ini adalah fungsi
enkapsulasi dalam bahasa pemrograman Python terhadap aspek keamanan dan reusabilitas
kode.

Jenis penelitian ini merupakan penelitian deskriptif kualitatif yang menekankan pada
pemahaman yang mendalam mengenaikonsep dan praktik enkapsulasi dalam Python (Adlini et
al., 2022). Metode yang diterapkan adalah studi literatur, yaitu cara pengumpulan data dan
informasi yang berasal dari berbagai referensi tertulis.

Sumber data dalam penelitianini bersifat sekunder, yang terdiri dari:
1. Buku teks tentang Pemrograman Berorientasi Objek (PBO)
2. Dokumentasi resmi Python (https://docs.python.org)
3. Jurnalilmiah nasionaldan internasional
4. Artikel teknis dari situs terverifikasi seperti RealPython, GeeksForGeeks, dan DataCamp

Proses pengumpulan data dilakukan dengan mencari referensi-referensi yang terkait
dengan topik enkapsulasi pada Python. Beberapa kata kunci yang dipakai dalam proses
pencarian meliputi: "Encapsulation in Python", "Python OOP", "data hiding in Python’,
"keamanan dalam kode Python", dan "reuse kode di Python"

Analisis data dilakukan secara tematik kualitatif, dengan langkah-langkah sebagai berikut:

1. Mengidentifikasi dan mengklasifikasikan data, yaitu mengelompokkan referensi menurut
tema utama (konsep enkapsulasi, metode implementasi, keamanan, dan reusabilitas).

2. Analisisisi, yaitu menelaah, memahami, dan menginterpretasikan konten bahan pustaka
untuk menemukan makna dan keterkaitan antara konsep-konsep utama.

3. Analisis data, yaitu menyusu n penjelasan atau argumen berdasarkan hasil yang didapat,
lalu menghubungkannya dengan praktik rekayasa perangkat lunak yang sesuai.

Hasil dari proses ini disajikan secara naratif untuk menjelaskan bagaimana enkapsulasi
dalam Python mendukung keamanan data internal serta meningkatkan efisiensi dalam
pemanfaatan kembali kode pada pengembangan perangkat lunak.

Dalam menjaga keabsahan data, penelitian ini hanya memanfaatkan sumber-sumber yang
terpercaya, seperti jurnal ilmiah yang terindeks, buku-buku akademik, dan dokumentasi resmi
Python. Literatur yang dipilih juga disaring berdasarkan keterkaitan dengan topik penelitian
serta keaktualan kontennya, agar cocok dengan konteks perkembangan teknologi perangkat
lunak saatini.

HASIL DAN DISKUSI
Enkapsulasi merupakan konsep fundamental dalam pemrograman berorientasi objek yang
bertujuan menutupi rincian internal sebuah objek dan hanya memperlihatkan elemen yang

https://ejournal.warunayama.org/
https://docs.python.org/

E-ISSN : 3025-1311 Q{ Kohesi: Jurnal Multidisiplin Saintek
https://ejournal.warunayama.org/kohesi > Volume 9 No 2 Tahun 2025

diperlukan lewat antarmuka publik. Dalam Python, konsep ini diterapkan bukan melalui
pengaturan akses seperti private, protected, atau public seperti di Java atau C++, melainkan
dengan menggunakan konvensi penamaan (naming convention) seperti:
1. Satu garis bawah (_) digunakan untuk menunjukkan atribut sebagai "protected” (dalam
konteks informal)
2. Dua garis bawah (__) untuk "name mangling” yang menyulitkan akses eksternal secara

langsung
3. Fitur @property dan @setter untuk mengatur akses baca-tulis atribut dengan cara yang

terkontrol
Contoh implementasi enkapsulasi Python bisa dilihat pada gambar dibawah ini.

class User:
def __init_ (self, username):
self.__username = username

@property

def username(self):
return self.__username

@username.setter
def username(self, value):
if isinstance(value, str):
self.__username = value

Gambar 1. Contoh Enkapsulasi pada Python

Gambar 1 memperlihatkan sebuah kelas Python yang diberi nama User dengan atribut
privat __username. Atribut ini dirancang agar tidak dapat diakses langsung dari luar kelas
karena menggunakan double underscore (__), yang menerapkan teknik name mangling dalam
Python. Untuk memberikan akses ke atribut tersebut, digunakan dekorator @property, yang
memungkinkan username diakses layaknya atribut biasa namun dengan cara yang teratur.
Selanjutnya, ada pula metode ®username.setter yang berfungsi untuk menetapkan atau
mengubah nilai __username. Di dalam setter itu, ditambahkan validasi tipe data untuk
memastikan bahwa nilai yang diberikan adalah string, sehingga data tetap terjaga
konsistensinya dan aman. Mekanisme seperti ini menggambarkan prinsip enkapsulasi dalam
OOP, di mana akses terhadap data internal dibatasi dan dikelola melalui metode publik yang
aman.

Enkapsulasi memungkinkan pengembang untuk menyembunyikandata internal agar tidak
dapat diakses secara ilegal oleh pihak luar. Dengan mekanisme __attribute dan pengaturan
setter, programmer dapat:

1. Melindungi karakteristik dari modifikasi langsung
2. Melakukan validasi sebelum merubah nilai
3. Menghindari penyalahgunaan objek oleh modul lain

Dalam studi oleh Ruohonen et al. (2021), diketahui bahwa 46% paket Python di PyPI
memiliki kemungkinan adanya celah keamanan. Banyak kerentanan ini muncul akibat kode yang
tidak terproteksi dengan baik, seperti penggunaan atribut publik tanpa pembatasan akses [2].
Oleh sebab itu, penerapan enkapsulasi yang tepat sangat berkontribusi dalam mengurangi risiko
tersebut.

https://ejournal.warunayama.org/

E-ISSN : 3025-1311 O.{ Kohesi: Jurnal Multidisiplin Saintek
https://ejournal.warunayama.org/kohesi > Volume 9 No 2 Tahun 2025

Enkapsulasi juga memiliki peran penting dalam mendukung modularitas serta
penggunaan ulang kode. Dengan membatasi akses hanya lewat metode publik (antarmuka),
komponen kode menjadi lebih tertutup, modular, dan lebih mudah untuk diuji. Hal ini sangat
bermanfaat dalam praktik pengembangan perangkat lunak yang melibatkan tim dan
pemanfaatan pustaka kode. Misalnya, dalam pengembangan pustaka (library) Python,
penerapan enkapsulasi dapat memastikan bahwa hanya fungsi-fungsi tertentu yang terlihat,
sehingga menghindari ketergantungan eksternal pada komponen internal program. Martin
(2009) menyatakan bahwa salah satu prinsip Clean Code adalah merancang kode dengan
antarmuka publik yang jelas serta mengurangi akses ke detail implementasi, yang merupakan
contoh langsung dari enkapsulasi [1].

Meski Python mendukung enkapsulasi, terdapat beberapa tantangan dalam
penerapannya:

1. Tidak ada sistem pengendalian akses yang sepenuhnya ketat. Atribut “private” dapat
diakses melalui name mangling (_ClassName__atribut).

2. Banyak pengembang baru yang melewatkan praktik ini karena Python memiliki sifat yang
fleksibel dan terbuka.

3. Minimnya pendidikanformal tentang keamanan kode dan prinsip desain di antara pelajar

Python

Menurut analisis literatur, beberapa saran untuk meningkatkan keamanan dan modularitas
melalui enkapsulasi di Python meliputi:

1. Manfaatkan konvensi__attribute untuk mengatur akses langsung ke data.
2. Gunakan @property untuk mengatur akses yang terkendali.
3. Jelaskan dengan tegas pemisahan antara atributinternal dan eksternal.
4. Catat antarmuka publik yang diizinkan.
5. Lakukan pengujian unit pada metode publik, bukan pada atribut secara langsung.
Table 1. Sintesis Temuan
Aspek Temuan Utama
Implementasi Python mendukung enkapsulasi melalui konvensi,
bukan kontrolakses eksplisit
Keamanan Enkapsulasi mengurangirisiko manipulasidata
yang tidak diinginkan
Reusabilitas Membantu modularitasdan pemeliharaan kode
Tantangan Akses tetap bisa dilakukan secara paksa;
penerapan masih lemah di kalangan pemula
Rekomendasi Gunakan @property, konvensiatribut privat, serta
Praktis struktur antarmuka yang jelas

Tabel 1. menyajikanrangkuman sintesis temuan penting dari hasil kajian pustaka tentang
peran enkapsulasi dalam Python. Dari segi implementasi, Python memberikan fleksibilitas
dengan pendekatan konvensi penamaan (naming convention) dibandingkan dengan kontrol
akses yang jelas seperti pada Java atau C++. Ini menjadi keuntungan dalam aspek kemudahan
belajar, namun juga menimbulkan tantangan terkait keamanan. Dalam hal keamanan,
enkapsulasi dapat membatasi akses langsung ke atribut penting dalam objek, sehingga
menurunkan risiko manipulasi data secara ilegal. Ini mendukung penerapan keamanan data yang
baik, meskipun dalam Python kontrol itu bersifat ilusif (tidak ketat). Mengenai reusabilitas,
enkapsulasi memungkinkan kode dirancang secara modular dan mudah dipelihara karena
struktur internal objek tidak terlihat secara langsung. Namun, tantangan masih ada, terutama
bagi pemula yang sering tidak memperhatikan prinsip ini karena kurangnya tekanan dari sistem.
Oleh sebab itu, sangat krusial untuk menerapkan strategi pelaksanaan seperti pemakaian

https://ejournal.warunayama.org/

E-ISSN : 3025-1311 O.{ Kohesi: Jurnal Multidisiplin Saintek

https://ejournal.warunayama.org/kohesi > Volume 9 No 2 Tahun 2025

@property, penamaan atribut dengan __, dan membatasi akses melalui interface yang telah
terdokumentasi dengan baik.

KESIMPULAN

Studi ini bertujuan untuk mengeksplorasi fungsi enkapsulasi dalam bahasa pemrograman
Python dan dampaknya terhadap keamanan serta kemampuan penggunaan kembali
(reusabilitas) kode. Menurut hasil kajian pustaka yang telah dilakukan, disimpulkan bahwa
enkapsulasi tetap berperan penting dalam Python, meskipun mekanisme yang ada tidak seketat
bahasa pemrograman lainnya seperti Java atau C++. Python menerapkan enkapsulasi dengan
menggunakan konvensi penamaan (_ dan __) serta fitur @property untuk mengelola akses ke
atribut objek secara terkontrol.

Dalam aspek keamanan, enkapsulasi dapat mengurangi risiko manipulasi data secara
langsung, mempertahankan konsistensi nilai, dan membatasi akses ke atribut internal yang
sensitif. Dalam hal reusabilitas, enkapsulasi mendukung pemrograman yang modular,
terstruktur, dan mudah dirawat, sehingga dapat dimanfaatkan kembali dalam proyek
pengembangan perangkat lunak lainnya.

Meskipun begitu, tantangan utama dalam penerapan enkapsulasi di Python adalah
lemahnya penegakan teknik terhadap batasan akses, serta kurangnya pemahaman para pemula
untuk menerapkan prinsip ini dengan konsisten. Oleh sebab itu, diperlukan saran praktis seperti
mengadopsi penggunaan @property, merancang antarmuka publik yang sederhana, serta
memisahkan atribut internal dari akses eksternal dengan cara terstruktur.

Secara keseluruhan, penelitian ini menegaskan bahwa meskipun Python menawarkan
fleksibilitas yang tinggi, prinsip enkapsulasi tetap penting dan berkontribusi signifikan terhadap
keamanan serta kualitas rekayasa perangkat lunak jika diterapkan dengan baik. Penelitian
berikutnya bisa mendalami lebih lanjut tentang penggabungan enkapsulasi dengan prinsip-
prinsip OOP yang lain seperti pewarisan dan polimorfisme dalam kerangka keamanan perangkat
lunak Python terkini.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah
memberikan dukungan dalam penyusunan artikel ini. Ucapan terima kasih khusus disampaikan
kepada para penulis dan pengembang yang telah menyediakan dokumentasiresmi serta artikel
teknis yang menjadi sumber utama dalam kajian ini, seperti DataCamp, RealPython, dan
GeeksForGeeks. Terima kasih juga kepada dosen pembimbing dan rekan-rekan yang telah
memberikan masukan dan semangat dalam proses penulisan. Semoga artikel ini dapat
memberikan manfaat bagi para mahasiswa dan pengembang perangkat lunak dalam memahami
dan menerapkan prinsip enkapsulasi dalam bahasa pemrograman Python secara lebih baik dan
terstruktur.

REFERENSI

Adlini, M. N., Dinda, A. H., Yulinda, S., Chotimah, O., & Merliyana, S. J. (2022). Metode
Penelitian Kualitatif Studi Pustaka. Edumaspul: Jurnal Pendidikan, 6(1), 974-980.
https://doi.org/10.33487/edumaspul.véi1.3394

Ali, H. M., Hamza, M. Y., & Rashid, T. A. (2024). Exploring Polymorphism: Flexibility and Code
Reusability in Object-Oriented Programming. Passer Journal of Basic and Applied
Sciences, 6(December), 502-512. https://doi.org/10.24271/PSR.2024.189667

Avianti, N., Penelitian, P., Pendekatan, S., Matematika, B., Dan, A., Nasional, P., Statistika,
M., Pendidikan, P. E., & Pers, R. (2010). Sugiyono, Metode Penelitian Kombinasi (Mixed
Methods), Bandung : Alfabeta , 2013. 2013-2015.

Del Cid, P. J., Hughes, D., Ueyama, J., Michiels, S., & Joosen, W. (2009). DARMA: Adaptable

https://ejournal.warunayama.org/

E-ISSN : 3025-1311 0." Kohesi: Jurnal Multidisiplin Saintek

https://ejournal.warunayama.org/kohesi }.' Volume 9 No 2 Tahun 2025

service and resource management for wireless sensor networks. MidSens’09 -
International Workshop on Middleware Tools, Services and Run-Time Support for Sensor
Networks, Co-Located with the 10th ACM/IFIP/USENIX International Middleware
Conference, 1-6. https://doi.org/10.1145/1658192.1658193

Martin, R. (2008). Clean Code. In Clean Code.

Ruohonen, J., Hjerppe, K., & Rindell, K. (2021). A Large-Scale Security-Oriented Static
Analysis of Python Packages in PyPl. 2021 18th International Conference on Privacy,
Security and Trust, PST 2021, Pst, 1-10. https://doi.org/10.1109/PST52912.2021.9647791

https://ejournal.warunayama.org/

